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Abstract

Background High-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large
electronic health record (EHR) repositories, and are characterised by properties such as portability, reproducibility and
validity. Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of
the definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype
library that is able to ensure the quality of hosted definitions by combining the functionality currently offered by
disparate tooling. Methods A group of researchers examined work to date on phenotype models, implementation and
validation, as well as contemporary phenotype libraries. Existing phenotype frameworks were also examined. This work
was translated and refined by all the authors into a set of best practices. Results We present 13 library desiderata that
promote high-quality phenotype definitions, in the areas of modelling, logging, validation and sharing and warehousing.
Conclusions There are a number of choices to be made when constructing phenotype libraries. Our considerations distil
the best practices in the field and include pointers towards their further development to support portable, reproducible,
and clinically valid phenotype design. The provision of high-quality phenotype definitions enables EHR data to be more
effectively used in medical domains.
Key words: Electronic health records; EHR-based phenotyping; computable phenotype; phenotype library

Introduction

As a result of digitisation of health systems world-wide, elec-
tronic health record (EHR) data repositories have emerged as
the main source of data for medical cohort research studies. To
extract these cohorts, there is an increasing reliance on EHR-
based phenotype definitions (also referred to as phenotyping al-

gorithms), which identify individuals that exhibit certain phe-
notypic traits, such as the same diseases, characteristics, or
set of co-morbidities. These definitions can be represented in
many forms, including narrative descriptions, pseudo-code, or,
in some cases, may already be directly executable.
While traditional big data techniques can successfully address
the scale of the EHR data available, the effectiveness of pheno-

Compiled on: May 24, 2021.
Draft manuscript prepared by the author.

1

Click here to access/download;Manuscript;main.tex

https://www.editorialmanager.com/giga/download.aspx?id=115508&guid=11de45cc-eeb0-41dd-9021-3dd4c7b0cc1d&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115508&guid=11de45cc-eeb0-41dd-9021-3dd4c7b0cc1d&scheme=1


2 | GigaScience, 0000, Vol. 00, No. 0

Key Points

• Portable, reproducible and clinically valid phenotype definitions have the potential to unlock health data repositories for
wider and more effective use.

• To ensure definitions are of high quality, associated tools should be supported directly through the libraries where pheno-
type definitions are hosted.

• 13 desiderata are presented to guide the development of future phenotype libraries, and to ensure phenotype definitions
are of a sufficient quality to enable the effective use of medical data in research and in healthcare provision.

type definitions is impacted by a range of other syntactic and
semantic issues, including variations in the way data is struc-
tured and the coding systems used.
To overcome these issue and enable effective cohort extraction,
a phenotype definition must exhibit certain properties. It must
be reproducible allowing for accurate (re)implementation, ir-
respective of the idiosyncrasies of the dataset against which
the definition was originally developed; portable, allowing for
straightforward implementation, irrespective of the structure
of the target dataset; and valid, effectively capturing the dis-
ease or condition modelled. A definition that exhibits all of
these properties we refer to as high-quality.
To ensure high-quality phenotype definitions, support should
be provided to the authoring, implementation, validation and
dissemination processes of a phenotype’s lifecycle. While such
support is currently available, it is often sporadic and inconsis-
tent as it is delivered via a wide range of different tools. In-
stead, building on the work of Richesson et. al [1], we propose
that the functionality provided by these tools should instead
be provided centrally, through the phenotype libraries where
definitions are hosted. For example, libraries should enable
phenotypes to be developed according to some set of standard
models, and track the evolution of definitions under these mod-
els, so as to ensure hosted definitions are clearer to understand
and thus have the potential to be more reproducible. Moreover,
libraries should assist in the derivation of directly computable
phenotype definitions, through the provision of implementa-
tion tooling, to improve portability by enabling the execution
of phenotypes in local use cases. Similarly, libraries should di-
rectly validate the definitions they host, through, for example,
automated comparisons with gold standards.
To this end, in this work we contribute a number of desider-
ata for the development of phenotype libraries, which not only
ensure that definitions are accessible, but also maximise the
quality of the phenotypes they contain by supporting all parts
of the definition lifecycle. By providing access to high-quality
definitions, phenotype libraries enable both efficient and ac-
curate use of EHR data for activities such as medical research,
decision support and clinical trial recruitment.

Background

Human phenomics is the study of human phenotypes, and in-
cludes the science and practice of defining observable medical
phenomena that indicate phenotypes to advance research and
personalised care. The concept of a phenotype originated as
a complement to the genotype, and a phenome was defined
as a complete set of an individual’s inheritable characteristics.
Rather than describing someone’s genetic information, a phe-
nome captures all the observable properties (phenotypes) that
result from the interaction of their genetic make-up and en-
vironmental factors, including their demographic information,
such as height or eye color, and medical histories.

With the emergence of large-scale EHR data repositories, the
term phenotype has evolved to denote traits shared by groups
of patients, such as a disease or condition that a cohort, or
set of individuals, has. This may also include other complex
combinations of traits, exposures, or outcomes, including co-
morbidities, polypharmacy, and demographic data. Defining
these phenotypes, and validating them to ensure their accu-
racy and generalisability, is the process known as phenotyp-
ing, with EHR-based phenotyping relying primarily on data in
the EHR. Computational phenotyping (also known as deep phe-
notyping) uses either supervised machine learning techniques
to discover new members of a priorly defined cohort, or unsu-
pervised techniques to discover entirely new phenotypes and
investigate their properties.
EHR data repositories bring with them a very specific set of
data challenges in terms of managing syntactic and semantic
complexity, which act as a barrier to studies that need to utilise
patient information from across multiple data sources and for
the needs of different studies. For example, by the nature of
healthcare delivery and how EHRs are used to document, a pa-
tient who has been diagnosed with diabetes mellitus may be
represented slightly differently in two EHR systems, and will
almost certainly be represented differently in EHRs for differ-
ent countries.
Phenotype libraries – where definitions can be uploaded, stored,
indexed, retrieved, and downloaded by users – provide a logi-
cal place in which to ensure that definitions are of a suitable
quality to overcome many of the issues associated with extract-
ing cohorts from complex EHR datasets. This is accentuated by
the fact that the development of phenotype libraries is a rapidly
growing area, with several currently under, or planned for, de-
velopment. Examples include the VAPheLib [2] – which aims to
collect, store and make available 1000 curated phenotype defi-
nitions for the clinical operations research community by the
end of 2021 – and the Observational Health Data Sciences and
Informatics (OHDSI) Gold Standard Phenotype Library, which
aims to support OHDSI community members in finding, evalu-
ating and utilising cohort definitions that are validated by the
research community [3]. Phenotype libraries are also being
developed as a part of wider phenotype frameworks. Along-
side Richesson’s reusable phenotype definition framework sit
initiatives such as the phenotyping pipeline (PheP), which aims
to extract, structure and normalise phenotypes from EHR data
collected across participating sites [4].

Methods

To determine the functionality that should be provided by a
next-generation phenotype library, a team of international re-
searchers from leading phenomics communities – comprising
Health Data Research UK (HDR UK) Phenomics theme members
and US researchers from the Mobilizing Computable Biomed-
ical Knowledge (MCBK) and Phenotype Execution and Mod-
elling Architecture (PhEMA) communities – examined a range



M. Chapman et al. | 3

Author Refine Implement Validate Publish

Modelling 
languages

Multi-dimensional 
descriptions

Comprehensive 
metadata

Versioning and 
provenance

Modular 
relationships

Implementation 
details in model

Prog. language 
agnostic

Multiple data 
formats/standards

Defined validation 
process

Automate multiple 
validation 

techniques

Enable feedback

Expose standard 
API

Advanced search 
capabilities

Figure 1. The stages of the phenotype definition lifecycle supported by a next-generation phenotype library.

of tools supporting different parts of the definition lifecycle,
including authoring (e.g., modelling using the Quality Data
Model (QDM) logic [5], the Clinical Quality Language (CQL) [6],
and use of the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM) [7]), implementation (e.g.,
definition translators [8]) and validation (e.g., electronic phe-
notyping validation [9]) tools.
A purposive sample of existing library initiatives – including
the Phenotype Knowledge Base (PheKB) [10], CALIBER [11],
Phenoflow [12], the Concept Library [13] and OHDSI’s Auto-
mated PHenotype Routine for Observational Definition, Iden-
tification, Training and Evaluation (APHRODITE) computable
phenotype architecture [14] – were also examined to determine
existing functionality and future trends. This was enriched
with a review of the literature via Web of Science (WoS) [15]
and the grey literature via Google to identify projects that have
developed or planned development of a phenotype library. Our
decision to include the grey literature was informed by our a
priori knowledge of systems under development that have not
yet published peer-review articles.
Common functionality provided by both the tooling and ex-
isting libraries were extracted and summarised. These were
translated to a draft set of desiderata via discussion amongst a
subset of the authors [MC, SM, EJ, SD, VC]. All authors partic-
ipated in an asynchronous iterative review process to critique,
consolidate, refine, and define the final set of desiderata. The
desiderata were further classified into logical categories.

Desiderata

In total, the authors arrived at finalised collection of 13 desider-
ata, which are organised across the following sections into
five categories: modelling, logging, implementation, valida-
tion and sharing and warehousing. Figure 1 shows how the
desiderata presented promote the design of a phenotype library
that supports all parts of the phenotype definition lifecycle.

Modelling

Phenotype models govern the structure and syntax of pheno-
type definitions. For example, phenotype definitions are com-
monly rule-based, meaning that they are comprised of indi-
vidual logical statements that each evaluate to a boolean value,

typically by relating data elements (with associated values) –
such as the presence of a particular set of ICD-10 codes or a par-
ticular lab result – to each other. The set of operators available
to an author when connecting data elements (e.g. logical con-
nectives such as conjunction and disjunction) would be estab-
lished within a phenotype definition model. A model may dic-
tate that a phenotype be represented in an unstructured, semi-
structured, structured, or executable manner [16]. A summary
of different phenotype definition formats, governed by pheno-
type models, is given in Table 1.
Implementing a phenotype definition involves translating the
abstract definition (if unstructured or semi-structured) into
an executable form that can be directly run against a patient
dataset in order to derive the cohort exhibiting the defined
phenotype. Typically this requires the logic of the definition
to be realised in a programming language, such as translat-
ing abstract conditional clauses into a set of tangible Python
conditional statements. We refer to these implementations as
computable phenotypes. For a definition to be reproducible, it
must be realised in a formal structure that can be accurately
interpreted and implemented. Given the potential for human
error in translating from an unstructured narrative to some-
thing computable, formal phenotype models provide such a
structure.
Phenotype models are also key in ensuring semantic interoper-
ability between definitions. That is, while the development of
phenotype definitions can involve deriving a curated, canoni-
cal set of phenotype definitions containing ‘definitive’ versions
for each disease of condition being modelled for a particular do-
main (e.g. a national stroke body may want to maintain their
set of stroke phenotyping algorithms), more often than not, it
is perfectly valid to have overlapping phenotype definitions for
different uses. For example, an eligibility criteria for a clini-
cal trial may differ from a rule that triggers a decision support
tool in an EHR system, and both would differ from a definition
used in a population health study, even if all three nominally
refer to same disease [17]. Internationally, definitions for the
same disease may also differ [18]. While this overlap is permis-
sible, different definitions for the same condition must still be
compatible, enabling, for example, their relative functionality
to be compared. The adoption of a phenotype model enables
such compatibility.
Given these benefits, a phenotype library should adopt a formal
phenotype model to control the structure of hosted definitions.
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Table 1. Phenotype definition formats
Format Description Example Category
Code list A set of codes that must exist in a patient’s health

record in order to include them within a pheno-
type cohort

COVID-19 ICD-10 code U07.1 Rule-based

Simple data elements Formalising the relationship between code-
based data elements using logical connectives

COVID-19 ICD-10 code U07.1 AND ICD-11
code RA01.0

Rule-based
Complex data elements Formalising the relationship between complex

data elements, such as those derived via NLP.
Patient’s blood pressure reading > 140
OR patient notes contain ‘high BP’

Rule-based
Temporal Prefix rules with temporal qualifiers Albumin levels increased by 25% over 6

hours, high blood pressure reading has
to occur during hospitalisation.

Rule-based

Trained classifier Use rule-based definitions as the basis for con-
structing a classifier for future (or additional) co-
horts

A k-fold cross validated classifier capa-
ble of identifying COVID-19 patients

Probabilistic

1 va lu e s e t={}
2 va lu e s e t [ ‘ ‘ Acute Pharyng i t i s ” ] = ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 1 ”
3 va lu e s e t [ ‘ ‘ Acute T o n s i l i t i s ” ] = ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 2 ”
4
5 def Pharyng i t i s ( ) :
6 condit ionA = va lu e s e t [ ‘ ‘ Acute Pharyng i t i s ” ]
7 condit ionB = va lu e s e t [ ‘ ‘ Acute T o n s i l i t i s ” ]
8 return condit ionA + ‘ ‘ ” + condit ionB ;

1 va lu e s e t ‘ ‘ Acute Pharyng i t i s ” : ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 1 ”
2 va lu e s e t ‘ ‘ Acute T o n s i l i t i s : ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 2 ”
3
4 de f i n e Pharyng i t i s :
5 [ Condit ion : ‘ ‘ Acute Pharyng i t i s ” ] union

[ Condit ion : ‘ ‘ Acute T o n s i l i t i s ” ]

Figure 2. Python (executable) vs. CQL (modelling) [21] representation of
Pharyngitis phenotype.

To ensure the use of such a model, a library can offer a graphi-
cal authoring environment – in the same way that tools such as
the Phenotype Execution and Modelling architecture (PhEMA)
Authoring Tool (PhAT) do [5] – through which new definitions
can be authored. Similarly, existing definitions can be automat-
ically checked for their adherence to the chosen model when
uploaded.

Desiderata relating to the adoption of a phenotype model by
a library are listed in the following sections. We view these
desiderata as complementary to the well-established desider-
ata for phenotype definition model development put forward
by Mo et al. [19].
Support modelling languages
The phenotype definition model adopted by a library should
be supported by a (non-executable) high-level modelling lan-
guage that dictates the syntax available to an author when
defining the logic of a phenotype. A computable form of the
definition can then be realised for execution in a local use case.
When selecting or developing a definition model, the tempta-
tion may be to select a lower-level, executable programming
language, in an attempt to expedite local implementation. For
example, one could argue that a language such as Python is suf-
ficient for simultaneously defining phenotypes and realising
them computationally. However, we would argue that using
such a language as a means to express the logic of a definition
ties the definition to general purpose, low-level language con-
structs, reducing clarity, and thus reproducibility. This conclu-
sion is supported by work such as [20], which found openEHR
an overly restrictive standard when attempting to express phe-
notype definitions in a form that can be directly executed. An
example of a phenotype definition realised in an executable lan-
guage (Python) is given in Figure 2.

In contrast, the syntax of higher level modelling languages,
while still precise, is often clearer, as well as often being do-
main specific. For example PhEMA’s PhAT allows users to de-
fine phentoypes using the high-level, domain-specific syntax
associated with the Quality Data Model’s (QDM) logic expres-
sions (now capable of working instead with the Clinical Quality
Language (CQL) [6]). Both QDM and CQL make particular pro-
vision for the representation of temporal information, such as
the (sequential) relationship between events or between events
and defined measurement periods. A further example of a mod-
elling language is OHDSI’s cohort definition syntax, which al-
though tied directly to the OMOP CDM, is also high-level and
domain specific, allowing for significant clarity when interpret-
ing existing definitions [7]. Like QDM/CQL, this syntax also
makes provision for temporal elements (e.g. associating pa-
tient observations to an elapsed time period), but looks more
holistically at the cohort relating to the phenotype being de-
fined, through, for example, the use of defined inclusion and
exclusion criteria. As a final example, Phenoflow’s workflow-
based model relies on a categorised set of steps to express phe-
notype definitions, with the same benefits [12]. An example
of a phenotype realised in a higher level modelling language
(CQL) is also given in Figure 2 for comparison.
In encouraging phenotype definition models to be built around
modelling languages, there is also the potential to support the
definition of a wider range of definition types (Table 1). That
is, at a higher level one is able to express not only standard
rule-based definitions, but also definitions based on Natural
Language Processing (NLP) and Machine Learning (ML) tech-
niques. These techniques are increasingly being used to either
derive, or form a part of, phenotype definitions, particularly
in those situations where the datasets against which the im-
plemented definition is to be executed against are of varying
completeness. For example, through a modelling language, an
author should be able to formally express the synonyms of a
given medical term, with a view to these being used as the basis
for processing free-text from a medical record in a computable
form in the absence of consistent record coding. Expressing the
use of NLP in an executable language would likely require refer-
ences to implemented libraries, which would reduce portability.
Similarly, in the case of ML, a modelling language should sup-
port the high-level specification of a trained patient classifier
(via the provision of values such as feature coefficients), or a
description of the workflow used to derive a classifier, with a
view to the classifier being re-implemented in new use cases,
or training a new model in new use cases, respectively [22].
Once again, at a lower level, this would likely result in refer-
ences to implemented libraries, reducing portability. The ab-
stract definition of machine learning-based, or probabilistic,
phenotypes is something supported in the OHDSI’s Automated
PHenotype Routine for Observational Definition, Identification,
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Training and Evaluation (APHRODITE) computable phenotype
architecture, which, although also linked to the OMOP CDM,
offers a level of abstraction at which rules can be fed into the
construction of a classifier, and lower level code generated ac-
cordingly [23]. Similarly, languages like CQL have the potential
to link to external tooling, for the purposes of expressing NLP
and ML functionality.
It is also important to note that the use of a modelling lan-
guage as the basis for a phenotype model does not preclude
the utility or use of higher-level, (more) human-readable rep-
resentations such as flowcharts. In fact, modelling languages
typically connect well with such representations. For example,
flowcharts can be directly generated from Phenoflow’s work-
flow model, QDM is linked to a graphical HTML layer and
OHDSI cohorts can be viewed graphically using the ATLAS co-
hort editor.
Support multi-dimensional descriptions
A significant hurdle in porting a phenotype definition from one
setting (institution or dataset) to another is understanding its
structure and semantics in order to derive a local computable
form, or modify an existing one. Complex rules and the use of
idiomatic clinical terminology, although often necessary com-
ponents of a definition, are both barriers to this understanding,
and thus reproducibility. To address this issue, a phenotype
definition model should allow an author to express the same
logic of a phenotype at different levels of technical complexity.
This approach aims to communicate supplementary informa-
tion alongside the provision of the core definition logic. For ex-
ample, the workflow-based Phenoflow model allows an author
to use the technical terminology and rules required to express
a phenotype definition, but then also requires an author to pro-
vide longer definitions of this functionality to improve clarity,
and to also classify each unit of functionality under a given
ontology, enabling a high-level understanding of the function-
ality to always be accessible. In other modelling languages like
CQL, such information can be communicated using constructs
such as inline comments.

Logging

The development of a phenotype definition is an incremental
process. Capturing and communicating this process is key in
ensuring a definition can be accurately interpreted and is thus
reproducible. Morover, this information strengthens the trust-
worthiness of a phenotype and thus its potential applications.
Therefore, phenotype libraries should provide a mechanism for
logging the evolution of a phenotype definition.
Support versioning and data provenance
One way in which a phenotype can evolve is through a series of
iterative refinements. SAIL databank’s Concept Library stores
phenotypes as sets of codes, with a view to making these phe-
notypes available in different studies and use cases [13]. The
concept library, as the name suggests, focuses on a model un-
der which phenotypes are collections of grouped medical con-
cepts or working sets. The Concept Library records and commu-
nicates the evolution of a phenotype definition using methods
akin to standard version control, logging the state of a phe-
notype after each revision, and thus provides an overview of
the definition’s progression. This versioning process often re-
lies on attributing a universally unique identifier (UUID) to
each definition, and each subsequent revision of that defini-
tion. Such an identifier might simply be incremental, or convey
some details of the phenotype itself. It should also be indepen-
dent of other identifiers, in order to maximise clarity [24]. For
example, within APHRODITE a UUID is generated by commit-
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Figure 3. An example data provenance trace showing an update to a dementia
phenotype, using the W3C PROV standard. The initial version of the phenotype
(1) is updated by four edit activities (2), each of which modifies a component
of the definition (e.g. record extract logic, diagnostic codes, previous history)
(3), in order to generate a new version (4), and the process is linked with the
author making these edits (5).

ting (each version of) a definition to a GitHub repository and
extracting the unique commit hash value [25].
A more comprehensive way to capture the evolution of a def-
inition – and thus contribute to its reproducibility – is to de-
ploy formal data provenance capture tools to capture richer, real-
time information about the evolution of an entity. This might
include information about updates to the structure of a defini-
tion, or details of how that definition was validated. It might
also include information about how the definition was derived
if, for example, the definition is a trained model. An example of
one such tool is the data provenance template server [26], which
allows for the specification of abstract templates, based on the
W3C PROV standard [27], while eliminating the complexity of
dealing with low-level provenance constructs.
Using provenance tools, a trace is automatically constructed
that can be queried in order to answer a range of questions,
such as which clinical codes were used to support a definition
at a given time. The Phenoflow library is integrated with the
provenance template server, enabling the evolution of the def-
initions it hosts to be tracked over time [28]. A fragment of
provenance constructed in this manner is shown in Figure 3.
Support modular relationships between phenotypes
Another way in which phenotype definitions evolve is through
their reuse in constructing new definitions. For example, a
phenotype may, either in part or entirely, be defined by other
self-contained phenotypes. For example, bipolar disorder is (in
part) defined by both substance and alcohol abuse, two pheno-
types in their own right [29]. In this way, existing phenotypes
become the building blocks for new phenotypes. Much like a
version history, it is thus important to capture and commu-
nicate this information upon implementation, to provide de-
tailed insight into the formulation of the definition. As such,
a phenotype library should log the relationship between differ-
ent definitions and, if authoring capabilities are supported, a



6 | GigaScience, 0000, Vol. 00, No. 0

library should allow new definitions to be constructed based
upon existing ones. This is similar to the approach taken by
the Concept Library, which relates concepts to each other in
order to create phenotype definitions, and by Finngen’s Risteys
platform, which relates phenotypes temporally, listing those
phenotypes that a patient is likely to exhibit either before or
after exhibiting another (e.g. the onset of depression after ex-
hibiting bipolar disorder) [30]. Establishing this relationship
further contributes to the provenance of a phenotype, the pre-
cision of its definition, and, consequently, its reproducibility.

Conversely, sub-phenotypes may be computationally derived
from existing phenotypes by clustering of those features (e.g.
demographic, diagnosis, medication, etc.) identified, by a
trained classifier, to be key attributes of those patients exhibit-
ing the parent phenotype [31]. Such a relationship should also
be logged by a phenotype library, to establish the evolution of
a definition, and track changes and dependencies across phe-
notype definitions.

Implementation

Our initial desiderata determined that phenotype definitions
should not themselves be executable. While important for re-
producibility, this raises natural issues around the complexity
of realising a phenotype defined using a modelling language
computationally for individual use cases, something that nega-
tively impacts portability. This issue can be addressed by meet-
ing several requirements, which are explored in the following
sections.
Communicate implementation information in the model
One way in which implementation can be supported is through
the definition itself, by communicating information pertinent
to its computable realisation. To do this, one might select a
phenotype definition model based on a modelling language that
allows an author to express additional information at different
levels of abstraction. For example, the Phenoflow model frames
the traditional (rule-based) logic of a phenotype definition as
an abstract layer, and allows an author to complement this layer
with additional layers, each of which gradually communicates
more implementation information: a functional layer, introduc-
ing the concept of data types, and a computational layer, ex-
pressing details such as target execution environments. The
fact that these layers sit alongside the traditional, abstract logic
layer, allows for more concrete implementation to be expressed
without impacting portability.

The abstract layer of the Phenoflow model is split into individ-
ual modules, each of which represents a distinct unit of func-
tionality, and which collectively define the process required for
deriving a patient cohort from a set of health records. Each
module in the abstract layer has an equivalent module in both
the functional and computational layers, ensuring a correspon-
dence between each level of representation within the model.
However, these modules also provide another means by which
implementation information can be communicated through a
definition model, in that they provide a clear template for de-
velopment; each module represents a single unit of function-
ality that must be implemented by a developer when realising
the computable form. This reduces the implementation bur-
den on developers, and thus improves portability. Modelling
languages like CQL, which support the definition of individual
functions as a part of an abstract layer, offer similar benefits.

Support tooling that provides multiple programming language im-
plementations
Phenotype implementation tooling automatically takes an ab-
stract phenotype definition and translates it into a computable
form. This naturally improves portability. Examples of this
tooling include the translators developed by the PhEMA initia-
tive, which are able to take a modelling language definition of a
phenotype – such as definitions expressed in QDM, as produced
by the PhAT, or in CQL – and transform them into executable
formats (e.g pipelines [8]).
Given these benefits, a phenotype library should provide ac-
cess to implementation tooling. In the simplest form, access
should be provided to this tooling by hosting and indexing it
in a library, in the same way that the definitions themselves
are hosted and indexed. This tooling can then be downloaded,
along with a definition, and executed locally in order to pro-
duce a computable form. More advanced integrations will pro-
vide the functionality offered by implementation tooling di-
rectly through the library, by running it as a service that can be
accessed by users via the library in order to download the auto-
matically generated computable form of a phenotype. This is
the approach taken by the Phenoflow platform, which allows
users to obtain computable copies of a phenotype definition di-
rectly, by running a microservice generation architecture.
The tooling indexed should be able to support implementations
in a variety of different programming languages. While the
programming language used might seem to be of little conse-
quence, in practice, even with this presence of a translator, the
researcher generating a computable form for a new use case
is likely to still have to modify that computable phenotype for
local use. Such modifications might include optimisations to
the structure of the implementation to allow the computable
form to operate in low-memory environments or to operate as
a part of existing infrastructure (e.g. a clinical trial platform
[32]). In this instance, having that definition in a language that
the researcher is comfortable with editing is important. For
example, the pipeline-based implementation produced by the
PheMA translator only supports the KNIME format. As such,
a researcher has to be comfortable with this format in order
to make edits. To maximise portability, phenotype libraries
should aim to support implementation tooling capable of pro-
ducing executable definitions in multiple languages. An exam-
ple of this is seen within the Phenoflow platform, where one
can generate a workflow that utilises modules from a variety
of languages, including Python and Javascript, with container-
ised environments supporting the straightforward execution of
these units locally.
Support tooling that provides connectivity with multiple data stan-
dards
When a phenotype definition is translated by a piece of tool-
ing into an executable form, it is typical for that definition to
be tied to a given data source format, from which the result-
ing cohort is identified. In certain cases, that data format is
always the same. For example, OMOP cohort definitions, when
translated into a computable form (SQL), are always tailored
for the OMOP CDM. While beneficial in the sense that this pro-
vides an automated translation process that works across sites,
those sites must all adopt the OMOP CDM, which is not always
the case. Instead, in reality, sites may use a variety of imple-
mentation formats, such as i2b2 and FHIR. For these reasons,
phenotype libraries should index implementation tooling that
not only supports multiple language implementations, but also
supports the realisation of definitions for different data for-
mats. Naturally, the more data source formats supported, the
more portable the definition stored within a library is. For ex-
ample, the computable forms generated by PhEMA’s transla-
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Table 2. Phenotype validation mechanisms
Mechanism Description Example
Disease registries Compare the phenotype cohort with those present in the

registry.
Comparison of a diabetes phenotype cohort with
those patients present in a diabetes registry (e.g.
T1D exchange).

Chart review Compare the phenotype cohort with the patients identi-
fied by manual chart review.

Comparison with a diabetes gold standard, pro-
duced by double manual chart review of patients.

Cross-EHR concordance Compare percentage of cases identified by a phenotype
across different sources, and identify any overlap.

Comparison of the percentage of patients identi-
fied by a diabetes phenotype in primary and sec-
ondary care EHRs, and the identification of any
case overlap.

Risk factors Compare the magnitude of the phenotype cohort with
standard risk calculations.

Comparison with the output of a Cox hazards
model.

Prognosis Compare the magnitude of the phenotype cohort with ex-
ternal prognosis models.

Comparison with a survival analysis.
Genetic associations Compare whether the presence of a patient in a pheno-

type cohort is consistent with their genetic profile.
A patient is more likely to be a valid member of a
diabetes cohort if they have the HLA-DR3 gene.

tors can be tailored for a variety of local data formats, includ-
ing FHIR and the OMOP CDM itself. Similarly, in the Phenoflow
library, interacting with a data source is considered to be the
first step in a phenotype’s definition, and as such different con-
nectors are available when generating the computable form of
a definition. These connectors support a variety of different
standards such as OMOP and i2b2, and plans are in place to
support dataset specific standards, such as the standard used
by UK Biobank (via tooling such as Funpack [33]).
The connector approach also provides a natural point at which
to conduct any necessary (automatic) translation between the
coding system adopted by a target data source, and the coding
system expected by the implemented definition. For example,
if the target datasource adopts Read codes, but the computable
phenotype relies on sets of ICD codes, a connector might not
only ingest data, but also perform code mappings accordingly.
Despite these benefits, the requirement to produce a new trans-
lator, or new connector, for each new data source format, is a
natural drawback to each of these approaches. However, the
advantages over manual translation are still clear.

Validation

Validating a phenotype definition involves confirming its accu-
racy. To do this, the cohort identified by a computable pheno-
type is typically compared to a reference standard, such as the
cohort identified by manual chart review from the same patient
population (a gold standard). The extent to which the two co-
horts overlap determines the validity of the definition. While
reference standards are a common means of phenotype valida-
tion, other techniques exist, and are listed in Table 2. Pheno-
type definitions that are shown to be accurate are considered
to be of a higher quality. Therefore, phenotype libraries should
facilitate the validation process.
Support a defined validation process
To support the validation of stored definitions, a phenotype
library should have a clear and scalable process for the submis-
sion of existing validation information by a user, across a vari-
ety of the mechanisms shown in Table 2. This information can
then be stored and presented alongside each definition. For ex-
ample, the CALIBER library stores phenotypes as code sets (342,
at the time of writing), with a view to providing a framework
for the definition of consistent phenotypes, which can then be
reused by care service providers for nation-wide EHR-based
observational research [11]. Each definition in CALIBER ap-
pears alongside algorithmic information about the relationship
between the code sets and key validation information. Specif-

ically, the CALIBER library offers up to 6 different techniques,
which are used to validate a single definition. Similarly, the
proposed OHDSI gold standard phenotype library is so-called
because there are plans to implement a well-defined process
for the submission of phenotypes based on different user roles.
Specifically, the submission of a computable phenotype defi-
nition to the library will occur using the APHRODITE architec-
ture and will require definitions to be submitted by those in the
author role, vetted by librarians, validated by users who act as
validators and used by standard users [34].
Automate multiple validation techniques
When new definitions are submitted without validation infor-
mation to a library, it should seek to automatically validate
these definitions by comparing them, or their outputs, against
assets that are hosted alongside the definitions, such as gold
standard datasets. For example, in [9], the authors present
electronic phenotyping validation, a framework for the automated
comparison of a definition with manual chart review results.
There is also an argument for the automated combination of
different validation approaches, to avoid the shortcomings of
each individual approach. For example, using a disease reg-
istry approach alone as a gold standard for phenotypes related
to that disease, is not scalable or feasible for patient cohorts
focusing on multi-morbidities and complex demographic cri-
teria. Similarly, validating using clinical notes reviews, where
phenotype patient matches are manually reviewed, are not sus-
tainable for large LHS infrastructures. While the manual text
extraction of phenotypes can be effective in smaller scenarios,
it is heavily dependent on the human expert and the sample
being analysed, and not well-suited to cross-site studies with
differences in clinical and operational procedures and opinion
between sites.
As such, phenotype libraries should offer novel hybrid ap-
proaches to validation that encompass structured data, free
text and ancillary sources for both structured and unstructured
data.
Enable feedback
To facilitate any (informal) user-based validation of stored def-
initions, a phenotype library should support social interactions
between the authors and researchers that use it, with a view to
providing authors with feedback and allowing them to address
this feedback accordingly. Social functionality is supported by
the Phenotype Knowledge Base (PheKB), which currently hosts
around 70 phenotype definitions [10]. For example, within the
library, users are able to post comments or questions against
different phenotypes. A researcher can also request collabora-
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tion on the development of phenotype definitions.
However, those users permitted to interact with a phenotype
definition within a portal may be restricted. Within PheKB,
only users with certain organisational affiliations (e.g. the
eMerge nerwork or the Phenome-Wide Association Studies
(PheWAS) community [35]) are provided with access by default,
with other users required to request an account prior to provid-
ing feedback on definitions. Other portals may restrict access
to different countries or regions.
In many cases, these restrictions are necessary during the de-
velopment of a phenotype. For example APHRODITE’s defi-
nition repositories are kept private while they are still under
development. However, once developed, definitions can be ac-
cessed through the repository via any web browser or through
an R shiny app. Based on practices such as these, phenotype
libraries should limit the restrictions they place on those who
can engage with the definitions in phenotype libraries, once
developed. By eliciting comments on the validity of hosted def-
initions from a wider audience, one is likely to gain a greater
understanding as to the quality of a definition.

Sharing and Warehousing

Once a phenotype definition is appropriately reproducible,
portable and validated, it should then be accessible for use by
others. While the traditional and default role of a phenotype
library is to provide such access, this can be optimised, as dis-
cussed in the following sections.
Expose a standard API
To maximise accessibility, a phenotype library should facilitate
user interactions via multiple interfaces. The definitions in a
library are usually available via a single interface: a graphical
front-end. While this provides a reasonable baseline for acces-
sibility, it does not maximise it. For example, a user cannot
instruct a piece of software to interact with the library, to in-
clude definitions directly within a piece of code, resulting in
potential inconsistencies arising from manual entry. Similarly,
existing software systems, such as decision-support systems,
cannot autonomously access phenotypic information. Perhaps
most importantly, a lack of programmatic accessibility means
that one library cannot easily access the functionality of an-
other in order to provide complimentary functionality.
To address these issue, phenotype libraries should offer API-
level web services that (at a minimum) duplicate the function-
ality available in a user interface. In doing so, several con-
siderations should be made. Firstly, the level of API access
needs to be considered, including whether to provide access
only to trusted partners, and thus provide suitable authentica-
tion mechanisms (e.g. OAuth), or whether to make the API
publicly accessible. The selection of the type of API level ac-
cess provided to the functionality of the web resource should
be subject to the policy of the organisation developing the li-
brary. Secondly, the protocol used to facilitate communication
with the API should be considered, such as Remote Procedure
Call (RPC), Service Object Access Protocol (SOAP) and Repre-
sentation State Transfer (REST). REST is a simple and widely
adopted specification model [36], and is thus the technology
that is likely to be most attractive when constructing a library
API. Next, to support programmatic access and enable defini-
tions to be differentiated automatically, a formal identification
system should be established for each definition. The most
straightforward way to this is to leverage the UUID attributed
to each phenotype version.
The functionality of the API itself also needs to be considered.

Phenoflow

Concept Library
(Web Interface +

API access)
CALIBER

Gateway

User

Bulk import API access

Workflow link Workflow link

Dataset link

Phenotype link

Dataset link

Phenotype Link
(API access)

Figure 4. Overview of the services that constitute the HDR UK phenotype li-
brary

In [1], the authors propose that an API service should be used to
construct phenotype definitions for the purpose of defining in-
clusion and exclusion criteria for clinical research trials. Build-
ing on this outline, we consider several additional API level use
cases, including: searching phenotype definitions, extracting
a specific phenotype definition, submitting a new phenotype
definition, submitting a new use case for an existing pheno-
type definition or validating an existing definition and linking
a phenotype definition with a data source, and vice-versa. Ex-
amples of specific functionality that an API level phenomics
resource should support within each of these use cases is given
in Table 3.
The benefits of API functionality are evident in the CALIBER,
Phenoflow and Concept Library libraries, each of which com-
municate together to collectively form, along with a dataset
Gateway, the HDR UK phenomics resource. As shown in Figure
4, each library operates as service, and collectively these ser-
vices are able to deliver the functionality of a single library to a
user. The services at the core of this library are the Concept Li-
brary and the CALIBER library, each of which store phenotype
definitions. Using provided APIs, the Concept Library is able to
import definitions from the CALIBER library, enabling pheno-
types to be both formally stored and validated across both ser-
vices, respectively. Similarly, the Phenoflow service – also ca-
pable of automatically importing and representing definitions
using a workflow-based model, and generating a correspond-
ing computable form for execution against a local dataset – is
able to import definitions from both the Concept Library and
CALIBER. Finally, the Gateway service provides access to a com-
prehensive collection of datasets, which are linked to by ser-
vices such as CALIBER, when a given phenotype definition is
present in one of the hosted datasets. Similarly, the Gateway
links back to CALIBER when a phenotype is present in a dataset,
in order to facilitate searches based upon these definitions.
Offer advanced search capabilities
The accessibility of existing phenotypes within a library relies
on its search capabilities. Searches based on given name or
identifier and version should enable simple use cases. For ex-
ample, PheKB offers comprehensive search functionality, with
users not only able to perform searches against the definitions
themselves using given keywords, but also against support-
ing definition content, such as articles, implementations and
datasets. Alternatively, the library has the option to list all
phenotype definitions – including phenotype definitions un-
der development, if the user is logged in – where a user can
instead filter the definitions returned after the fact, based on
properties such as the authoring institution.
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Figure 5. Metadata structure adopted by CALIBER (left) and PheKB (right).

While the search functionality offered by PheKB is helpful,
more advanced search capabilities should be supported to fa-
cilitate both more complex cases and improved information
retrieval. This includes searches based on specific codes, or
groups of codes, or an approximate pattern matching, based on
regular patterns or even text similarity. Synonyms (including
abbreviations and acronyms) may also be used as a mechanism
to improve search results over keyword searches. For example,
a search for ‘diabetes’ would likely fail to find a phenotype that
refers to ‘T2DM’ throughout, although ‘T2DM’ is a recognised
abbreviation that can be semantically linked via the UMLS.
Even more advanced capabilities might include searches em-
ploying semantic similarity between a given set of concepts
and the stored phenotypes supported by phenotype ontologies
[37]. This could enable the discovery of semantically identical
or closely related concepts within the library. Similarly, simi-
larity metrics between phenotype definitions, facilitated by the
adoption of a formal phenotype model, are likely assist in scal-
able searches across different repositories, whereby a partial
match may indicate a usable cohort definition to investigate.
Include comprehensive metadata
The search and browse features described must be supported
by appropriate metadata, which can be used to describe both
the subject and format of phenotypes in ways that make them
findable to users with specific research or clinical needs. Such
definitions we might refer to as ‘FAIR Phenotypes’ [38]. To
achieve this, each phenotype definition should include struc-
tured data that describes the subject (i.e., clinical condition)
and intent (screening, etc.) of the definition, as well as the
source, date, publisher, etc., similar to the tagging of resources
in traditional libraries. Additionally, each component of the
phenotype model (e.g., underlying data model, data elements,
value sets, code lists, coding language) must be specified with
an assigned code or value so that users can search on these
features or have them displayed when browsing a phenotype
library or repository. Examples of existing libraries that look
to attribute appropriate metadata to stored definitions include
CALIBER and PheKB (Figure 5).
In addition to supporting search, the use of metadata is impor-
tant for a number of other reasons. Firstly, metadata can make
clear characteristics of phenotypes related to their accessibility,
interoperability and re-use. To this end, as part of the Mo-

bilizing Computable Biomedical Knowledge (MCBK) initiative,
Alper and Flynn et al. have proposed 12 categories of metadata
that are required to fully represent knowledge objects, includ-
ing phenotypes, for FAIR principled criteria [39]. In addition,
metadata fields that describe the versioning aspects of a def-
inition can be populated to further formalise the provenance
of the phenotypes in a collection. Next, as the intent, devel-
opment, and validation of phenotypes are essential for poten-
tial implementers to understand in order to trust the quality
and appropriateness of a phenotype for a new purpose, repre-
senting aspects of the pheontype development and validation
process formally is critical. To do this, the Trust and Policy
Work Group of the Patient-Centered Clinical Decision Support
Learning Network defined extensive set of metadata for trust
[40]. Finally, metadata can be used to formally represent many
aspects of the implementation and tooling described, enabling
potential implementers to search on these features, such as
language, and possibly support automated translations.
While more and robust metadata are beneficial from a library
perspective, populating these metadata accurately and consis-
tently require resources, and the extent and detail of metadata
will depend upon a balance to adequately meet the needs at the
expense that the library sponsor will bear. One potential solu-
tion to this issue is automatically generate metadata, which is
the approach taken in data management platforms [41]. Over-
all, time will show how the community of phenotype users can
develop consensus on minimum set of metadata, library or in-
dexing best practices to complement and formalise the desider-
ata described here, and also build a compelling value case for
their use to support high quality phenotyping across countries.

Conclusions

While making significant advances, computable phenotyping
is still at an early stage where methods and repositories are
emerging to meet the needs of a range of medical research
domains, with little methodological consensus. As tooling
gradually matures beyond the realm of early adopters to be-
come usable for a broad spectrum of researchers and imple-
menters, the focus needs to move away from one-size-fits-
all ‘perfect’ phenotype definitions to acknowledging the diver-
sity of phenotype application areas, resultant explosion in the
numbers and variations of phenotypes to be stored, and the
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challenges of deploying them in the real world. Portability
and reproducibility are essential in addressing this scaling-up,
with techniques needed to move phenotype definitions between
both data sources and different health settings.
Phenotype libraries offer a natural meeting point of these mul-
tiple use-cases and domains to support high-quality pheno-
type definitions. In terms of designing phenotype libraries as
technical entities that enable the storage and retrieval of def-
initions, there is a clear need to track the evolution of pheno-
type definitions as they are authored, support advanced search
techniques that enable these definitions to be located by others,
and establish a collaborative process through which the validity
of definitions can be critiqued. All of this functionality should
be accessible within a library via multiple channels, in partic-
ular comprehensive, standards-based API functionality to en-
sure interoperability. Authoring and storing phenotype defini-
tions according to a standard model is another aspect through
which phenotype libraries can contribute to definition repro-
ducibility. The model adopted by a phenotype library should
exist at the correct level of abstraction, prioritising modelling
languages over executable programming languages, and offset
this, in terms of implementation, by incorporating key imple-
mentation information, and improving clarity through multi-
dimensional descriptions. Finally, a phenotype library should
encourage the use of phenotype definitions in new use cases
by supporting the validation process, both automatically, and
through the definition of a structured validation process.
The impact of supporting the development and implementa-
tion of high-quality phenotype definitions is significant, par-
ticularly as these definitions provide efficient access to accurate
cohort data by overcoming many of the complexities associated
with patient datasets. Cohort data not only supports research
studies (e.g. the identification of predictors for a certain con-
dition), but also the provision of decision support (e.g. access
to the medical histories of one or more individuals) and clin-
ical trials (e.g. the establishment of trial cohorts). The use
of computable phenotypes to determine cohorts from complex
datasets for these purposes can be complemented by using tra-
ditional big data techniques to manage scale; by an increased
focus on multi-morbidities – the complex interactions of dis-
eases in patients – which are a crucial factor in personalised
decision support systems; and by N-of-1 clinical trial design.
Overall, running through these desiderata is the awareness that
cross-domain sharing of phenotype definitions can only occur
through curated libraries that evolve in a controlled manner.
Such libraries have to be 1) clinically and scientifically valid;
2) technically realisable; and 3) usable by researchers in differ-
ent domains. Through the usage of our desiderata, we believe
the current and future phenotype libraries will deliver on these
three fronts.
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